学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告30:钟学秀 — Infinitely many Sign-changing normalized solutions of competition-diffusion p-Laplacian systems

B·体育(中国)官方网站:2024-04-25 作者: 点击数:

报告B·体育(中国)官方网站:2024年4月26日(星期五)11:00-12:00

报告地点:翡翠科教楼B1710

报告人:钟学秀 副研究员

工作单位:华南师范大学

举办单位:B·体育(中国)官方网站

报告简介:

In this talk, we are concerned with system of m p-Laplacian Schr\"odinger equations with competition interactions in a bounded regular domain. When the nonlinearities are odd satisfying some suitable assumptions, we can apply the vector genus and descending flow method to establish infinitely many sign-changing normalized solutions. The innovation is that we construct a tangent pseudo-gradient vector field for the energy functional on the constrained manifold, which can be used to find invariant sets of descending flow. The difficulty is reinforced by the p-Laplacian operator and also by the normalized constraint. Since we are dealing with $p>1$ in a unified way, the energy functional may be not regular enough and the p-Laplacian operator is not linear, we cannot benefit from certain classical techniques directly. This is a joint work with Prof. Jianjun Zhang and my students Anjie Feng and Jinfang Zhou.

报告人简介:

钟学秀,华南师范大学副研究员,华南数学应用与交叉研究中心青年拔尖引进人才,最新ESI高被引学者。研究方向为运用非线性分析、变分法等方法来研究几何分析学、数学物理中椭圆型偏微分方程和方程组以及某些不等式问题。主持国家青年基金和面上基金各一项。已在J.Differential Geom., J. Math. Pures Appl., Math. Ann., Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),Calc. Var. PDE,J. Differential Equations等国际重要刊物上发表多篇学术论文。在非线性泛函分析和椭圆偏微分方程领域的Li-Lin 公开问题,Sirakov 公开问题,Bartsch-Jeanjean-Soave公开问题等方面获得了重要进展。

上一篇:学术报告31:钮维生 — Homogenization of Parabolic Systems with Several Spatial and Temporal Scales

下一篇:学术报告29:杨美华 — Convergence problem of the generalized Kadomtsev-Petviashvili II equation in anisotropic Sobolev space